Life-cycle assessment

A life-cycle assessment (LCA, also known as life-cycle analysis, ecobalance, and cradle-to-grave analysis)[1] is a technique to assess environmental impacts associated with all the stages of a product's life from-cradle-to-grave (i.e., from raw material extraction through materials processing, manufacture, distribution, use, repair and maintenance, and disposal or recycling). LCA’s can help avoid a narrow outlook on environmental concerns by:

Contents

Goals and purpose of LCA

The goal of LCA is to compare the full range of environmental effects assignable to products and services in order to improve processes, support policy and provide a sound basis for informed decisions.

The term life cycle refers to the notion that a fair, holistic assessment requires the assessment of raw-material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product's existence.

There are two main types of LCA. Attributional LCAs seek to establish the burdens associated with the production and use of a product, or with a specific service or process, at a point in time (typically the recent past). Consequential LCAs seek to identify the environmental consequences of a decision or a proposed change in a system under study (oriented to the future), which means that market and economic implications of a decision may have to be taken into account. Social LCA is under development as a different approach to life cycle thinking intended to assess social implications or potential impacts. Social LCA should be considered as an approach that is complementary to environmental LCA.

The procedures of life cycle assessment (LCA) are part of the ISO 14000 environmental management standards: in ISO 14040:2006 and 14044:2006. (ISO 14044 replaced earlier versions of ISO 14041 to ISO 14043.)

Four main phases

According to the ISO 14040[3] and 14044[4] standards, a Life Cycle Assessment is carried out in four distinct phases as illustrated in the figure shown to the right.The phases are often interdependent in that the results of one phase will inform how other phases are completed.

Goal and scope

An LCA starts with an explicit statement of the goal and scope of the study, which sets out the context of the study and explains how and to whom the results are to be communicated. This is a key step and the ISO standards require that the goal and scope of an LCA be clearly defined and consistent with the intended application. The goal and scope document therefore includes technical details that guide subsequent work:

Life cycle inventory

Life Cycle Inventory (LCI) analysis involves creating an inventory of flows from and to nature for a product system. Inventory flows include inputs of water, energy, and raw materials, and releases to air, land, and water. To develop the inventory, a flow model of the technical system is constructed using data on inputs and outputs. The flow model is typically illustrated with a flow chart that includes the activities that are going to be assessed in the relevant supply chain and gives a clear picture of the technical system boundaries. The input and output data needed for the construction of the model are collected for all activities within the system boundary, including from the supply chain (referred to as inputs from the technosphere).

The data must be related to the functional unit defined in the goal and scope definition. Data can be presented in tables and some interpretations can be made already at this stage. The results of the inventory is an LCI which provides information about all inputs and outputs in the form of elementary flow to and from the environment from all the unit processes involved in the study.

Inventory flows can number in the hundreds depending on the system boundary. For product LCAs at either the generic (i.e., representative industry averages) or brand-specific level, that data is typically collected through survey questionnaires. At an industry level, care has to be taken to ensure that questionnaires are completed by a representative sample of producers, leaning toward neither the best nor the worst, and fully representing any regional differences due to energy use, material sourcing or other factors. The questionnaires cover the full range of inputs and outputs, typically aiming to account for 99% of the mass of a product, 99% of the energy used in its production and any environmentally sensitive flows, even if they fall within the 1% level of inputs.

One area where data access is likely to be difficult is flows from the technosphere. Those completing a questionnaire will be able to specify how much of a given input they use from supply chain sources, but they will not usually have access to data concerning inputs and outputs for those production processes. The entity undertaking the LCA must then turn to secondary sources if it does not already have that data from its own previous studies. National databases or data sets that come with LCA-practitioner tools, or that can be readily accessed, are the usual sources for that information. Care must then be taken to ensure that the secondary data source properly reflects regional or national conditions.

Life cycle impact assessment

Inventory analysis is followed by impact assessment. This phase of LCA is aimed at evaluating the significance of potential environmental impacts based on the LCI flow results. Classical life cycle impact assessment (LCIA) consists of the following mandatory elements:

In many LCAs, characterization concludes the LCIA analysis; this is also the last compulsory stage according to ISO 14044:2006. However, in addition to the above mandatory LCIA steps, other optional LCIA elements – normalization, grouping, and weighting – may be conducted depending on the goal and scope of the LCA study. In normalization, the results of the impact categories from the study are usually compared with the total impacts in the region of interest, the U.S. for example. Grouping consists of sorting and possibly ranking the impact categories. During weighting, the different environmental impacts are weighted relative to each other so that they can then be summed to get a single number for the total environmental impact. ISO 14044:2006 generally advises against weighting, stating that “weighting, shall not be used in LCA studies intended to be used in comparative assertions intended to be disclosed to the public”. This advice is often ignored, resulting in comparisons that can reflect a high degree of subjectivity as a result of weighting.

Interpretation

Life Cycle Interpretation is a systematic technique to identify, quantify, check, and evaluate information from the results of the life cycle inventory and/or the life cycle impact assessment. The results from the inventory analysis and impact assessment are summarized during the interpretation phase. The outcome of the interpretation phase is a set of conclusions and recommendations for the study. According to ISO 14040:2006, the interpretation should include:

A key purpose of performing life cycle interpretation is to determine the level of confidence in the final results and communicate them in a fair, complete, and accurate manner. Interpreting the results of an LCA is not as simple as 3 is better than 2, therefore Alternative A is the best choice! Interpreting the results of an LCA starts with understanding the accuracy of the results, and ensuring they meet the goal of the study. This is accomplished by identifying the data elements that contribute significantly to each impact category, evaluating the sensitivity of these significant data elements, assessing the completeness and consistency of the study, and drawing conclusions and recommendations based on a clear understanding of how the LCA was conducted and the results were developed.

Reference test

More specifically, the best alternative is the one that the LCA shows to have the least cradle-to-grave environmental negative impact on land, sea, and air resources.[5]

LCA tools and uses

There are two basic types of LCA tools:

In the former category, the three principal tools are GaBi Software, developed by PE International, SimaPro, developed by PRé Consultants, and umberto, developed by ifu Hamburg GmbH. In the second category, different tools operate at different levels. At the product level, the U.S. National Institute of Standards and Technology (NIST) makes its BEES (Building for Environmental and Economic Sustainability) tool freely available, Solidworks CAD software (Dassault Systèmes) presents LCA-based environmental information to the user through an add-on called SustainabilityXpress, and PTC’s Windchill Product Analytics makes LCA results an integral part of product development systems.[6] At the whole building design level, different tools are available in different parts of the world. For example, the ATHENA® Impact Estimator for Buildings is capable of modeling 95% of the building stock in North America, Envest has been developed by the Building Research Establishment to meet UK needs, and EcoQuantum is available in the Netherlands. For the Netherlands, extensive databases (open access) are available on the so called eco-costs and carbon footprint of buildings and its components, see winket. The European Council of Construction Economists is planning to develop such open source databases for other European countries as well. At a building assembly level (e.g., exterior walls) the free ATHENA® EcoCalculator for Assemblies is an example of a tool that serves North America and the Whole Building Design Guide is an example of a tool applicable to the UK.

Based on a survey of LCA practitioners carried out in 2006[7] LCA is mostly used to support business strategy (18%) and R&D (18%), as input to product or process design (15%), in education (13%) and for labeling or product declarations (11%).

Major corporations all over the world are either undertaking LCA in house or commissioning studies, while governments support the development of national databases to support LCA. Of particular note is the growing use of LCA for ISO Type III labels called Environmental Product Declarations, defined as "quantified environmental data for a product with pre-set categories of parameters based on the ISO 14040 series of standards, but not excluding additional environmental information".[8][9] These third-party certified LCA-based labels provide an increasingly important basis for assessing the relative environmental merits of competing products.

Data analysis

A life cycle analysis is only as valid as its data; therefore, it is crucial that data used for the completion of a life cycle analysis is accurate and current. When comparing different life cycle analyses with one another, it is crucial that equivalent data is available for both products or processes in question. If one product has a much higher availability of data, it cannot be justly compared to another product which has less detailed data.[10]

There are two basic types of LCA data – unit process data and environmental input-output data (EIO), where the latter is based on national economic input-output data.[11] Unit process data is derived from direct surveys of companies or plants producing the product of interest, carried out at a unit process level defined by the system boundaries for the study.

Data validity is an ongoing concern for life cycle analyses. Due to globalization and the rapid pace of research and development, new materials and manufacturing methods are continually being introduced to the market. This makes it both very important and very difficult to use up-to-date information when performing an LCA. If an LCA’s conclusions are to be valid, the data must be recent; however, the data-gathering process takes time. If a product and its related processes have not undergone significant revisions since the last LCA data was collected, data validity is not a problem. However, consumer electronics such as cell phones can be redesigned as often as every 9 to 12 months,[12] creating a need for ongoing data collection.

The life cycle considered usually consists of a number of stages including: materials extraction, processing and manufacturing, product use, and product disposal. If the most environmentally harmful of these stages can be determined, then impact on the environment can be efficiently reduced by focusing on making changes for that particular phase. For example, the most energy-intensive life phase of an airplane or car is during use due to fuel consumption. One of the most effective ways to increase fuel efficiency is to decrease vehicle weight, and thus, car and airplane manufacturers can decrease environmental impact in a significant way by replacing aluminum with lighter materials such as carbon fiber reinforced fibers. The reduction during the use phase should be more than enough to balance additional raw material or manufacturing cost.

Variants

Cradle-to-grave

Cradle-to-grave is the full Life Cycle Assessment from resource extraction ('cradle') to use phase and disposal phase ('grave'). For example, trees produce paper, which can be recycled into low-energy production cellulose (fiberised paper) insulation, then used as an energy-saving device in the ceiling of a home for 40 years, saving 2,000 times the fossil-fuel energy used in its production. After 40 years the cellulose fibers are replaced and the old fibers are disposed of, possibly incinerated. All inputs and outputs are considered for all the phases of the life cycle.

Cradle-to-gate

Cradle-to-gate is an assessment of a partial product life cycle from resource extraction('cradle') to the factory gate (i.e., before it is transported to the consumer). The use phase and disposal phase of the product are omitted in this case. Cradle-to-gate assessments are sometimes the basis for environmental product declarations (EPD) termed business-to-business EDPs.[13]

Cradle-to-cradle or open loop production

Cradle-to-cradle is a specific kind of cradle-to-grave assessment, where the end-of-life disposal step for the product is a recycling process. It is a method used to minimize the environmental impact of products by employing sustainable production, operation, and disposal practices and aims to incorporate social responsibility into product development.[14] From the recycling process originate new, identical products (e.g., asphalt pavement from discarded asphalt pavement, glass bottles from collected glass bottles), or different products (e.g., glass wool insulation from collected glass bottles).

Allocation of burden for products in open loop production systems presents considerable challenges for LCA. Various methods, such as the avoided burden approach have been proposed to deal with the issues involved.

Gate-to-gate

Gate-to-gate is a partial LCA looking at only one value-added process in the entire production chain. Gate-to-gate modules may also later be linked in their appropriate production chain to form a complete cradle-to-gate evaluation.[15]

Well-to-wheel

Well-to-wheel is the specific LCA used for transport fuels and vehicles. The analysis is often broken down into stages entitled "well-to-station", or "well-to-tank", and "station-to-wheel" or "tank-to-wheel", or "plug-to-wheel". The first stage, which incorporates the feedstock or fuel production and processing and fuel delivery or energy transmission, and is called the "upstream" stage, while the stage that deals with vehicle operation itself is sometimes called the "downstream" stage. The well-to-wheel analysis is commonly used to assess total energy consumption, or energy conversion efficiency and emissions impact of marine vessels, aircrafts and motor vehicle emissions, including their carbon footprint, and the fuels used in each of these transport modes.[16][17][18]

The well-to-wheel variant has a significant input on a model developed by the Argonne National Laboratory. The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model was developed to evaluate the impacts of new fuels and vehicle technologies. The model evaluates the impacts of fuel use using a well-to-wheel evaluation while a traditional cradle-to-grave approach is used to determine the impacts from the vehicle itself. The model reports energy use, greenhouse gas emissions, and six additional pollutants: volatile organic compounds (VOCs), carbon monoxide (CO), nitrogen oxide (NOx), particulate matter with size smaller than 10 micrometre (PM10), particulate matter with size smaller than 2.5 micrometre (PM2.5), and sulfur oxides (SOx).[11]

Economic input–output life cycle assessment

Economic input–output LCA (EIOLCA) involves use of aggregate sector-level data on how much environmental impact can be attributed to each sector of the economy and how much each sector purchases from other sectors.[19] Such analysis can account for long chains (for example, building an automobile requires energy, but producing energy requires vehicles, and building those vehicles requires energy, etc.), which somewhat alleviates the scoping problem of process LCA; however, EIOLCA relies on sector-level averages that may or may not be representative of the specific subset of the sector relevant to a particular product and therefore is not suitable for evaluating the environmental impacts of products. Additionally the translation of economic quantities into environmental impacts is not validated.

Ecologically-based LCA

While a conventional LCA uses many of the same approaches and strategies as an Eco-LCA, the latter considers a much broader range of ecological impacts. It was designed to provide a guide to wise management of human activities by understanding the direct and indirect impacts on ecological resources and surrounding ecosystems. Developed by Ohio State University Center for resilience, Eco-LCA is a methodology that quantitatively takes into account regulating and supporting services during the life cycle of economic goods and products. In this approach services are categorized in four main groups: supporting, regulating provisioning and cultural services.[8]

Life cycle energy analysis

Life cycle energy analysis (LCEA) is an approach in which all energy inputs to a product are accounted for, not only direct energy inputs during manufacture, but also all energy inputs needed to produce components, materials and services needed for the manufacturing process. An earlier term for the approach was energy analysis.

With LCEA, the total life cycle energy input is established.

Energy production

It is recognized that much energy is lost in the production of energy commodities themselves, such as nuclear energy, photovoltaic electricity or high-quality petroleum products. Net energy content is the energy content of the product minus energy input used during extraction and conversion, directly or indirectly. A controversial early result of LCEA claimed that manufacturing solar cells requires more energy than can be recovered in using the solar cell . The result was refuted.[20] Another new concept that flows from life cycle assessments is Energy Cannibalism. Energy Cannibalism refers to an effect where rapid growth of an entire energy-intensive industry creates a need for energy that uses (or cannibalizes) the energy of existing power plants. Thus during rapid growth the industry as a whole produces no energy because new energy is used to fuel the embodied energy of future power plants. Work has been undertaken in the UK to determine the life cycle energy (alongside full LCA) impacts of a number of renewable technologies.[21][22]

Energy recovery

If materials are incinerated during the disposal process, the energy released during burning can be harnessed and used for electricity production. This provides a low-impact energy source, especially when compared with coal and natural gas[23] While incineration produces more greenhouse gas emissions than landfilling, the waste plants are well-fitted with filters to minimize this negative impact. A recent study comparing energy consumption and greenhouse gas emissions from landfilling (without energy recovery) against incineration (with energy recovery) found incineration to be superior in all cases except for when landfill gas is recovered for electricity production.[24]

Criticism

A criticism of LCEA is that it attempts to eliminate monetary cost analysis, that is replace the currency by which economic decisions are made with an energy currency. It has also been argued that energy efficiency is only one consideration in deciding which alternative process to employ, and that it should not be elevated to the only criterion for determining environmental acceptability; for example, simple energy analysis does not take into account the renewability of energy flows or the toxicity of waste products; however the life cycle assessment does help companies become more familiar with environmental properties and improve their environmental system.[25] Incorporating Dynamic LCAs of renewable energy technologies (using sensitivity analyses to project future improvements in renewable systems and their share of the power grid) may help mitigate this criticism.[26]

A problem the energy analysis method cannot resolve is that different energy forms (heat, electricity, chemical energy etc.) have different quality and value even in natural sciences, as a consequence of the two main laws of thermodynamics. A thermodynamic measure of the quality of energy is exergy. According to the first law of thermodynamics, all energy inputs should be accounted with equal weight, whereas by the second law diverse energy forms should be accounted by different values.

The conflict is resolved in one of these ways:

Critiques

Life cycle assessment is a powerful tool for analyzing commensurable aspects of quantifiable systems. Not every factor, however, can be reduced to a number and inserted into a model. Rigid system boundaries make accounting for changes in the system difficult. This is sometimes referred to as the boundary critique to systems thinking. The accuracy and availability of data can also contribute to inaccuracy. For instance, data from generic processes may be based on averages, unrepresentative sampling, or outdated results.[28] Additionally, social implications of products are generally lacking in LCAs. Comparative life-cycle analysis is often used to determine a better process or product to use. However, because of aspects like differing system boundaries, different statistical information, different product uses, etc., these studies can easily be swayed in favor of one product or process over another in one study and the opposite in another study based on varying parameters and different available data.[29] There are guidelines to help reduce such conflicts in results but the method still provides a lot of room for the researcher to decide what is important, how the product is typically manufactured, and how it is typically used.

An in-depth review of 13 LCA studies of wood and paper products[30] found[31] a lack of consistency in the methods and assumptions used to track carbon during the product life cycle. A wide variety of methods and assumptions were used, leading to different and potentially contrary conclusions – particularly with regard to carbon sequestration and methane generation in landfills and with carbon accounting during forest growth and product use.

The Agroecology tool "agroecosystem analysis" offers a framework to incorporate incommensurable aspects of the life cycle of a product (such as social impacts, and soil and water implications).[32] This tool is specifically useful in the analysis of a product made from agricultural materials such as corn ethanol or soybean biodiesel because it can account for an ecology of contexts interacting and changing through time. This analysis tool should not be used instead of life-cycle analysis, but rather, in conjunction with life-cycle analysis to produce a well-rounded assessment.

Dynamic life cycle assessment

In recent years, the literature on life cycle assessment of energy technology has begun to reflect the interactions between the current electrical grid and future energy technology. Some papers have focused on energy life cycle,[33][34][35] while others have focused on carbon dioxide and other greenhouse gases.[36] The essential critique given by these sources is that when considering energy technology, the growing nature of the power grid must be taken into consideration. If this is not done, a given class of energy technology may emit more carbon dioxide over its lifetime than it mitigates.

See also

energy portal
Sustainable development portal

References

  1. ^ "Defining Life Cycle Assessment (LCA)." US Environmental Protection Agency. 17 October 2010. Web.
  2. ^ "Life Cycle Assessment (LCA)." US Environmental Protection Agency. 6 Aug. 2010. Web.
  3. ^ ISO 14040 (2006): Environmental management – Life cycle assessment – Principles and framework, International Organisation for Standardisation (ISO), Geneve
  4. ^ ISO 14044 (2006): Environmental management – Life cycle assessment – Requirements and guidelines, International Organisation for Standardisation (ISO), Geneve
  5. ^ Curran, Mary Ann. "Life Cycle Analysis: Priciples and Practice". Scientific Applications International Corporation. http://www.epa.gov/nrmrl/lcaccess/pdfs/chapter1_frontmatter_lca101.pdf. Retrieved 24 October 2011. 
  6. ^ Windchill 10.0 Product Analytics entry
  7. ^ Cooper, J.S.; Fava, J. (2006). "Life Cycle Assessment Practitioner Survey: Summary of Results". Journal of Industrial Ecology. 
  8. ^ a b S. Singh, B. R. Bakshi (2009). "Eco-LCA: A Tool for Quantifying the Role of Ecological Resources in LCA". International Symposium on Sustainable Systems and Technology: 1–6. doi:10.1109/ISSST.2009.5156770. ISBN 978-1-4244-4324-6. 
  9. ^ EPD_Systemwww.thegreenstandard.org
  10. ^ Scientific Applications International Corporation (May). "Life cycle assessment: principles and practice". p. 88. http://www.epa.gov/NRMRL/lcaccess/pdfs/600r06060.pdf. 
  11. ^ a b "How Does GREET Work?". Argonne National Laboratory. 2010-09-03. http://greet.es.anl.gov/. Retrieved 2011-02-28. 
  12. ^ Choney, Suzanne (24 February 2009). "Planned obsolescence: cell phone models". MSNBC. http://www.msnbc.msn.com/id/29258026/ns/technology_and_science-tech_and_gadgets/t/planned-obsolescence-cell-phone-models/. Retrieved 28 October 2011. 
  13. ^ EPD-The Green Yardstick
  14. ^ "Cradle-to-cradle definition." Ecomii. 19 Oct. 2010. Web. <http://www.ecomii.com/ecopedia/cradle-to-cradle>.
  15. ^ Jiménez-González, C.; Kim, S.; Overcash, M. Methodology for developing gate-to-gate Life cycle inventory information. The International Journal of Life Cycle Assessment 2000, 5, 153–159.
  16. ^ Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas (May 2005). "Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems — A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions". Argonne National Laboratory. http://www.transportation.anl.gov/pdfs/TA/339.pdf. Retrieved 2011-02-28.  See EXECUTIVE SUMMARY – ES.1 Background, pp1.
  17. ^ "Full Fuel Cycle Assesment: Well-To-Wheels Energy Inputs, Emissions, and Water Impacts". California Energy Commission. 2007-08-01. http://www.energy.ca.gov/2007publications/CEC-600-2007-004/CEC-600-2007-004-REV.PDF. Retrieved 2011-02-28. 
  18. ^ "Green Car Glossary: Well to wheel". Car Magazine. http://www.carmagazine.co.uk/Green-car-landing-page/Green-car-glossary/. Retrieved 2011-02-28. 
  19. ^ Hendrickson, C. T., Lave, L. B., and Matthews, H. S. (2005). Environmental Life Cycle Assessment of Goods and Services: An Input–Output Approach, Resources for the Future Press ISBN 1933115246.
  20. ^ David MacKay Sustainable Energy 24 February 2010 p. 41
  21. ^ McManus, M (2010). "Life cycle impacts of waste wood biomass heating systems: A case study of three UK based systems". Energy 35 (10): 4064–4070. doi:10.1016/j.energy.2010.06.014. 
  22. ^ Allen, S.R., G.P. Hammond, H. Harajli, C.I. Jones, M.C. McManus and A.B. Winnett (2008). Integrated appraisal of micro-generators: methods and applications. 161. pp. 73–86. doi:10.1680/ener.2008.1+61.2.73. 
  23. ^ Damgaard, A, et. al. Life-cycle-assessment of the historical development of air pollution control and energy recovery in waste incineration. Waste Management 30 (2010) 1244–1250.
  24. ^ Liamsanguan, C., Gheewala, S.H., LCA: A decision support tool for environmental assessment of MSW management systems. Jour. of Environ. Mgmt. 87 (2009) 132–138.
  25. ^ Hammond, Geoffrey P. (2004). "Engineering sustainability: thermodynamics, energy systems, and the environment". International Journal of Energy Research 28 (7): 613–639. doi:10.1002/er.988. http://ftp.unb.br/pub/UNB/ftpfort/Termia/Engineering%20sustainability.pdf. 
  26. ^ Pehnt, Martin (2006). "Dynamic life cycle assessment (LCA) of renewable energy technologies". Renewable Energy: an International Journal 31 (1): 55–71. doi:10.1016/j.renene.2005.03.002. 
  27. ^ Cornelissen, Reinerus Louwrentius (1997). "Thermodynamics and sustainable development; the use of exergy analysis and the reduction of irreversibility". Thesis, University of Twente, Netherlands. http://doc.utwente.nl/32030/. 
  28. ^ Malin, Nadav, Life-cycle assessment for buildings: Seeking the Holy Grail. Building Green, 2010.
  29. ^ Linda Gaines and Frank Stodolsky Life-Cycle Analysis: Uses and Pitfalls. Argonne National Laboratory. Transportation Technology R&D Center
  30. ^ National Council for Air and Stream Improvement Special Report No: 04-03. Ncasi.org. Retrieved on 2011-12-14.
  31. ^ FPInnovations 2010 A Synthesis of Research on Wood Products and Greenhouse Gas Impacts 2nd Edition page 40. (PDF) . Retrieved on 2011-12-14.
  32. ^ Bland, W.L. and Bell, M.M. (2007). "A holon approach to agroecology". International Journal of Agricultural Sustainability 5 (4): 280–294. http://www.drs.wisc.edu/documents/articles/bell/bland-bell-2007.pdf. 
  33. ^ J.M. Pearce, “Optimizing Greenhouse Gas Mitigation Strategies to Suppress Energy Cannibalism” 2nd Climate Change Technology Conference Proceedings, p. 48, 2009
  34. ^ Joshua M. Pearce (2008). "Thermodynamic limitations to nuclear energy deployment as a greenhouse gas mitigation technology". International Journal of Nuclear Governance, Economy and Ecology 2 (1): 113–130. doi:10.1504/IJNGEE.2008.017358. 
  35. ^ Jyotirmay Mathur, Narendra Kumar Bansal, and Hermann-Joseph Wagner (2004). "Dynamic energy analysis to assess maximum growth rates in developing power generation capacity: case study of India". Energy Policy 32 (2): 281–287. doi:10.1016/S0301-4215(02)00290-2. 
  36. ^ R. Kenny, C. Law, J.M. Pearce (2010). "Towards Real Energy Economics: Energy Policy Driven by Life-Cycle Carbon Emission". Energy Policy 38 (4): 1969–1978. doi:10.1016/j.enpol.2009.11.078. 

Further reading

  1. Bowe, Scott. "A gate-to-gate life-cycle inventory of solid hardwood flooring in the EasternUS". Wood and Fiber Science, March 2010. Society of Wood Science and Technolog. http://www.corrim.org/pubs/reports/2010/swst_vol42/79.pdf. Retrieved 25 October 2011. 
  2. Thomas,J.A.G., ed: Energy Analysis, ipc science and technology press & Westview Press, 1977, ISBN 0-902852-60-4 or ISBN 0-89158-813-2
  3. Crawford, R.H. (2011) Life Cycle Assessment in the Built Environment, London: Taylor and Francis.
  4. M.W.Gilliland ed: Energy Analysis: A New Public Policy Tool, AAA Selected Symposia Series, Westview Press, Boulder, Colorado, 1978., ISBN 0-89158-437-4
  5. Center for Life Cycle Analysis, Columbia University, New York
  6. J. Guinée, ed:, Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards, Kluwer Academic Publishers, 2002.
  7. Hendrickson, C. T., Lave, L. B., and Matthews, H. S. (2005). Environmental Life Cycle Assessment of Goods and Services: An Input–Output Approach, Resources for the Future Press.
  8. Baumann, H. och Tillman, A-M. The hitchhiker's guide to LCA : an orientation in life cycle assessment methodology and application. 2004. ISBN 91-44-02364-2
  9. Crawford, R.H. (2008) Validation of a Hybrid Life-Cycle Inventory Analysis Method, Journal of Environmental Management, 88(3), 496–506.
  10. Jimenez-Gonzalez, C., et al. 2004. Cradle to Gate Life Cycle Inventory and Assessment of Pharmeceutical Compounds. Intr J LCA. 9(2): 114–121.
  11. Curran, Mary A. "Environmental Life-Cycle Assessment", McGraw-Hill Professional Publishing, 1996, ISBN 978-0070150638
  12. Kim, S. and Dale, B.E. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel. Biomass & Bioenergy 2005, 29, 426–439.
  13. Ciambrone, D. F. (1997). Environmental Life Cycle Analysis. Boca Raton, FL: CRC Press. ISBN 1-56670-214-3.
  14. Horne,Ralph., et al. "LCA: Principles, Practice and Prospects". CSIRO Publishing,Victoria, Australia, 2009., ISBN 0-64309-452-0
  15. Trusty, Wayne, “An Overview of Life Cycle Assessments: Part One”, International Code Council Building Safety Journal Online, October 2010, http://bsj.iccsafe.org/2010Oct/features/lca.html.
  16. Vigon, B. W. (1994). Life-Cycle Assessment: Inventory Guidelines and Principles. Boca Raton, FL: CRC Press. ISBN 1-56670-015-9.
  17. Vogtländer,J.G., “A practical guide to LCA for students, designers, and business managers”, VSSD, 2010, ISBN 978-90-6562-253-2.

External links